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I. INTRODUCTION

In this paper we examine approximation problems of the following kind:
Let T and E be normed spaces and P a subset of E, F: E -+ T a mapping,
and let F[P] be the set of approximating functions. If wET, then a best
approximation to W is an element Vo E F[P] with [I W - Vo II ~ II W - v II for
every v E F[P]. We study the question whether such a best approximation is
unique.

Let P be given as a set described by inequaJity and equality constraints:
I is a finite set, (rj)jEI is a set of compact topological spaces, Po is an open
subset of E, Z is a Banach space, and let mappings gT,j: E -+ !R(T E r j ,j E I)
and p: E -+ Z be given. Let

P = nn {a EEl gT,j(a) ~ O} () {a EEl pea) = e} () Po·
jEI TEFj

We assume here that E is a Banach space, F is Frechet differentiable at every
a E P, the sets (gT,j)TEF

j
(j E 1) have the property DI at every a E P (see

VVarth [13]) and P has the property D2 at every a E P (see Warth [13]),1
For a E P let

for every j E I,

E(a) = {h EEl p'(a)h = e, g~,ia)h ~ 0 for every T E ria) andj E Ita)}

and T(a) = F'(a)[E(a)], Let d(a) denote the dimension of span T(a). a E P is
called regular, ifp'(a) is surjective and there is an h E E withp'(a)h = e and

1 Dl and D2 are differentiability assumptions.

0021-9045/79/010001-11 $02.00/0
Copyright © 1979 by Academic Press, Inc.

All rights of reproduction in any form reserved.



2 WOLFGANG WARTH

g;jex)h < 0 for every T E Tiex) and j E [(ex). P is regular if every ex E P is
regular.

In [13] it has been proved (local Kolmogoroff condition):

THEOREM 1. If Vo = F(exo) is a best approximation to wET and exo E P is
regular, then for every h E E(exo)

(1.1)

Ew- v is the set of continuous, linear functionals I on T with I(w - vo) =o
II w - voll·

In this paper we suppose T to be the space C(X) of continuous, real-valued
functions defined on a compact, topological space Xwith the maximum norm.
We present new necessary and sufficient conditions for an element to be a
unique best approximation. We obtain generalizations of well-known results
of Meinardus and Schwedt [9] to constrained approximation problems.
We apply the general results to constrained approximation problems to
obtain results as in Braess [1], Taylor [12], Loeb, Moursund, and Taylor [8],
Deutsch [4], Warth [14], and Roulier and Taylor [11].

For this approximation problem (1.1) is equivalent to for every q E T(exo)

min{(w(x) - vo(x)) q(x) I x E M w- v) <; 0, (1.2)

where M w- v = {x E X I I w(x) - vo(x)[ = II w - VoII}. For a simple proofo
see Kirsch, Warth, and Werner [6].

We say that (F, P) has the property R, if for every ex, fJ E P there is a
function ep E C(X) with c;(x) > 0 for every x E X and a function q E T(ex)
such that F(fJ) - F(ex) = epq.

This condition has been used by Krabs [7] (where it was called "Darstell
barkeitsbedingung").

If (F, P) has property R, then (1.2) implies for every v E F[P]

min{(w(x) - vo(x))(v(x) - vo(x)) [ X E M w- vo} <; O. (1.3)

Condition (1.3) is always sufficient for an element Vo to be a best approxi
mation to w (Kolmogoroff criterion). F[P] is called an ex-sun (see Brosowski
and Wegmann [3]) if WET and Vo is a best approximation to w, then Vo is a
best approximation to Vo+ A(W - vo) for every A > O. If F[P] is an ex-sun
and Vo is a best approximation to w, then (1.3) holds.

If (F, P) has property R, then F[P] is an ex-sun (best approximations are
characterized by the Kolmogoroff criterion) and best approximations are
characterized by the local Kolmogoroff condition.
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2. A NECESSARY CONDITION

3

LEMMA 2. Let lXo E P be regular and let (F, P) have property R. Let r
linear independent functions U1'" Ur E C(X) be given so that T(exo) C
span{u1 ... ur}. If there is a f3 E P, F(f3) =1= F(lXo) so that F(f3) - F(lXo) has r
zeros Xl .•. X r E X, then there is a function WE C(X) so that F( IXO) and F(f3) are
best approximations to w.

Proof Let G E C(X) be defined by G(x) = 1 v1(x) - vo(x)j (x EX),
where V1 = F(f3), vo = F(ao). Let a = II G II and choose Xo E X so that
G(xo) = a. Let

j = 0, 1, ... , r.

There is a vector (f30 ... f3r) E W+1\{t9} so that

r

L f3A = t9.
j~O

(2.1)

If Xl ... xr are linear independent, then f30 =1= 0 and we can assume
f3o(vlxo) - vo(xo)) > O.

If Xl ... xr are linear dependent we can assume f30 = O. Let

J = {j E {O ... rJ I f3j =1= O}.

There is a function g E C(X), II gil = 1 so that

g(x) - f3j J' E J
j -fK1' .

Let WE C(X) be defined by

W(x) = g(x)(1X - G(X)) + v1(x)

Then II w - Vo II = a. For j E J\{O} we obtain

w(x;) - vo(Xj) = I ~: I a

hence {t j jj E J} C M w- v •
o

(x E X).

(2.1) implies "2:;=0 f3 j h(xj) = 0 for every hE span{u1... ur}, particularly
for every h E T(ao). Thus

for every h E T(1X0)'
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For j E J\{O} f3lw(xj) - vo(Xj» > 0 and if 0 E J then f3o(w(xo)-vo(xo)) > O.
Consequently

for every hE T(exo). Since (F, P) has property R, Vo is a best approximation
to W by the Kolmogoroff criterion. Since II W - vl!1 ~ ex, VI is a best approxi
mation as well.

(F, P) has the global Haar property, if

d(ex) < 00 for every ex E P,

for every V E F[P] there is an ex E P so that F(ex) = V and d(ex) ;;:, 1,

v, V E F[P] and V =F v imply that V - v has at most dv - 1 zeros with

do = min{d(ex) I ex E P, F(ex) = v, d(ex) ;;:, I}.

Applying Lemma 2 we obtain

THEOREM 3. Let P be regular and let (F, P) have property R. If every
WE C(X) has at most one best approximation and 1 ~ d(ex) < 00 for every
ex E P, then (F, P) has the global Haar property.

Proof Suppose there are v, V E F[P] so that v - v has do - 1 zeros. Let
r = do, Ii E P so that F(Ii) = v and d(li) = r. Choose UI , ... , Ur E C(X) so
that T(Ii) C span {ul .,. ur}. Then there is a function WE C(X) so that v and v
are best approximations to W according to Lemma 2 and we obtain a contra
diction.

EXAMPU:. Let E = ~n, UI '" Un E C(X) linear independent. Let F:
E -+ C(X) be defined by (exl exn) 1---* L;~l exiUi' I = {I, 2, ... , n}. Let gi:
E -+ ~ (j E J) be defined by (exl exn) 1---* -exi . Then P = {(exl ... exn) E ~n 1

exi ;;:, 0 j = 1, 2, ... , n} is regular. For ex E P let

I(ex) = {jEll exj = O},

E(ex) = {(YI ... Yn) E ~n IYi ;;:, 0 for every.i E I(ex)},

T(ex) = litl YiUj E C(X) IYi ;;:, 0 for every j E I(ex)l,

d(ex) = n.

Since (F, P) has property Rand P is regular we obtain the implication:
If every WE C(X) has at most one best approximation then span{ul ... un}

is a Haar space. (Apply Theorem 3). But the inverse implication does not
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hold. Let X = [-I, I], n = 3, and uI(x) = I, U2(X) = x, uaCx) = x2 for
every XE X.

Let w(x) = x2 - 1 for every x E X. Then e and x2are best approximations
to w.

3. A SUFFICIENT CONDITION

AT-signature (M+, M-) is a pair of closed, disjoint Ga-subsets of X with
M+ V M- =F 0. Let M = (M+, M-) and

E~(X) = 1 if x E M+,

E~(X) = -1 if x E M-.

The T-signature M is called extremal for Vo E F[P] if for every v E F[P] ,
min{E~(x)(v(x) - vo(x» I x E M+ V M-} ~ O. If WE C(X), w =F e then the
T-signature Mw = (Mw+, M w-) is defined by Mw+ = {x E X I w(x) = II w II},
Mw- = {x E X I w(x) = -II w II}.

LEMMA 4. Let 0:0 E P be regular. If M is a T-signature which is extremal
for Vo = F(0:0), then for every q E T(0:0), min{E~X) q(x) I x E M+ V M-} ~ O.

Proof There is a function E E C(X) with M.+ = M+, M.- = M-, and
E(X) = E~(X) for every x E M+ V M-. By the Kolmogoroff criterion Do is a
best approximation to Vo + € since Mis extremal for Vo • Hence by Theorem 1
we obtain the result.

The set of zeros of a function WE C(X) is denoted by Z(w). If M and MI

are two T-signatures and M I C M+, M I C M-. then we write MI < M.
Using an idea of Brosowski and Wegmann [3, "Durchschnittssatz"] we

obtain:

LEMMA 5. Let F[P] be an o:-sun. Let WE C(X) and suppose Vo , VI E F[P]
are best approximations to w. Then M = (M+, M-) with

is a T-signature which is extrema/for Vo (and Z(vi - vo):J M+ v M-).
Proof Let A > 0 and w~ = w + A(W - vJ. Since F[P] is an o:-sun VI is a

best approximation to w~ and II w~ - VI II = (1 + A) II w - VI II. However
II w~ - Vo II ::;:;; II w~ - w II + II w - Vo II ~ AII w - VI II + II w - Vo II = (1 + A)
II w - VI II. Hence Vo is a best approximation to w~ .

Since F[P] is an o:-sun

min (wix) - vo(x»(v(x) - vo(x» ~ 0
xEMwA - tlo

for every V E F[P]. (The Kolmogoroff criterion is necessary.)
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M~t.-vo = {X E X I W(X) - VO(X) + '\(W(X) - VI(X)) = (1 + ,\) II W - VI II}

EM (X) q(x) > 0 for every x E
1

and

Hence min",eM+uM- EM(X)(V(x) - vo(x)) ~ 0 for every v E F[P], i.e., M is
extremal for Vo .

Let VoE F[P] and 1M is aT-signature. (F, P) has the property TU at (vo , 1M)
if the following holds:

If 1MI < 1M and if there is a v EF[P), v =F Vowith Z(v - vo):::) M I + U M I -,

then there is an 0: E P so that

(i) F(o:) =F Vo

(ii) Z(F(o:) - vo):::) MI + U MI -

(iii) there is an q E T(o:) so that
MI + U M1-.

(F, P) has the property TV if it has the property at (vo , 1M) for every
Vo E F[P) and every T-signature 1M.

THEOREM 6. If P is regular, F[P) is an o:-sun, WE C(X), and VoE F[P] is a
best approximation to w, then Vo is the only best approximation if (F, P) has
the property TU at (vo , 1Mw_ v ).

o

Proof Suppose there is a v E F[P), v =F Vo which is a best approximation
to w. By Le~ma 5 M+ = M~-vo Il_M~_v_, M- = M;J-VoIl M;;,_v defines a
T-signature M = (M+, M-) with M < M w- v and Z(v - vo):::) M+ U M-.

o
Then there is an 0: E P with F(o:) =F Vo , Z(F(o:) - vo):::) M+ u M- and there is
a qo E T(o:) with EM(x) qo(x) > 0 for every x E M+ U M-. 1M is extremal for
Vo' Z(F(o:) - vo):::) M+ U M- implies that 1M is extremal for F(o:). Then
Lemma 4 implies min{EM(x) q(x) I x E M+ U M-} ~ 0 for every q E T(o:)
and we obtain a contradiction with qo .

As a corollary we obtain

THEOREM 7. IfP is regular, F[P) is an o:-sun and (F, P) has the property TU,
then every WE C(X) has at most one best approximation.

Examples

(1) If (F, P) has the global Haar property and T(o:) is a Haar space on
X for every 0: E P,2 then (F, P) has the property TV. Applying Theorem 7

2 A finite dimensional linear subspace H *" {9} of C(X) is called a Haar space on X,
if every v E H has at most dim H - I zeros (in X).
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we obtain the generalization of a well-known theorem of Meinardus and
Schwedt [9, Satz 14].

(2) If (F, P) has property Rand T(IX) is a Haar space on X for every
IX E P, then (F, P) has the global Haar property. Applying Theorem 7 (and a
theorem of Krabs [7] on the relation of the property R to asymptotic con
bexity) we obtain a result similar to Satz 10 of Meinardus and Schwedt [9].

If P = E, n EN, ul ... Un E C(X) are linear independent and F: E -+ C(X)
is given by (IXI •.• IXn) f-+ };IXiU; , then Theorems 3 and 7 imply the well-known
theorem (see [10]):

Every W E C(X) has at most one best approximation if and only if
span{ul ... un} is a Haar space on X.

Brosowski [2] claimed the equivalence of the uniqueness of best approxi
mations and the space T( IX) to be Haar spaces on X in the case of asymptotic
convexity. However in the proof there is a gap.

(3) Suppose that for every Vo E F[P] there is a IXO E P with F(IXo) = Vo ,
T(IXo) is a Haar space on X, and every difference v - Vo , V E F[P], v =1= Vo has
at most d(IXo) - 1 zeros, then (F, P) has property TU.

In the following three examples let n EN, Po = E = IRn, X = [0,1] and
let F: E -+ qo, 1] be given by (IXl ... IXn) f-+ };IXiUi , where UI ... Un E qo, 1]
are linear independent.

(4) Linear Approximation with Parameter Constraints

Let mEN, m ~ n. Suppose for every set I with {I, 2, ... , m} C IC
{I, 2, ... , n} span{ui liE I} is a Haar space on X. Let P = {(IXI ... IXn) E
E I IXj )': OJ = m + 1 ... n}. Then P is regular and (F, P) has the property R.

Let Vo E F[P] , M is a T-signature. Suppose there is a signature MI < M
and a VIEF[P], vI=l=VO so that Z(vl -vo):JM1+UMI-; v =};eXjUj =
tevi + vo). Let r be the number of indices j E {m + 1 ... n} with eXj > °and
I = {j E {m + 1 ... n} I eXj > O}. Then v - VoE span({ul ... um} U {(Ui)iel})
and v - Vo has at most m + r - 1 zeros. Then there is a q E T(eX) with
Etf (x) q(x) > °for every x E M 1+ U M I-. Hence (F, P) has property TU at

1 ~ ~

(vo , M) (for every Do E F[P] and every T-signature M).

(5) Linear Restricted Range Approximation

Suppose U = span{ul ... un} is a Haar space on X. I = {I, 2}, T = [0,1].
Let I, U E qo, 1] so that I(x) < u(x) for every x E [0, 1]. gT.I: E -+ IR (7" E F)
is defined by
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Then

is regular as was shown by Warth [13] and (F, P) has property R.
If w E qo, I] and Vo E F[P] so that

(M;t-vo n {x EO [0, 1] I vo(x) = u(x)})

v (M;;;-vo n {x E [0, 1] I vo(x) = lex)}) = 0

then (F, P) has the property TU at (vo , Mw- v ). For M < Mw_ v and v E F[P],
o 0

v =1= Vo with Z(v - vo) :J M+ U M-. A = {x E [0, I] Ivex) = u(x)}, B =
{x E [0, I] Ivex) = lex)}, where v = tev + vo) = };&jUj' Then

T(&l ... &n) = {qE U I q(x) ~ °for every XE A,

q(x) ~ 0 for every x E B}.

Z(v - Vo) = Z(V - VO) :J M+ u M- implies Z(V - Vo) :J M+ u M- u A u B.
Since U is a Haar space on [0, 1] M+ U M- u A u B contains at most n - 1
points. (A n M+) u (B n M-) = 0 implies that there is a q E U so that
q(x) = 1 if x E M+, q(x) = -1 if x E M-, q(x) ~ 0 if x E A and q(x) ~ 0
if x E B. Hence q E T(&l ... &n) and €E(x) q(x) > 0 for every x E M+ U M-.

One can argue in the same way in the case of restricted range approxi
mation. So we obtain uniqueness results as in Taylor [12] and Loeb et al. [8].

(6) Linear Approximation with Interpolatory Constraints

Suppose U = span{ul '" un} is a Haar space on X. Let mEN, m < n,
o~ Xl < ... < Xm ~ 1 andYI '" Ym E lR.p: E - IRm is given by (£xl ... (Xn)f--+

(};(XiUi(XJ - Y1 , ... , E(XiUi(Xm) - Ym). Then p is linear and surjective, thus
P = {«(Xl'" £xn) IP«(XI ... (Xn) = e} is regular and (F, P) has property R.

If Vo E F[PJ and M is a T-signature with {Xl ... xm} n (M+ u M-) = 0
then (F, P) has the property TU at (vo , M). For v E F[P], v =1= Vo and MI < M
with Z(v - vo):J M 1+ u M 1-. V = };(XjUj. Then T«(X1 .,. £x,.) = {q E U I
q(Xj) = 0, j = 1,2,... , m}. Since M I + U M I - contains at most n - m - 1
points there is a q E U with q(x) = 1 if x E M I +, q(x) = -1 if X E M- and
q(Xj) = O,j = 1,2,..., m. Then q E T(£X1 ... £xn) and €A:{ (x) q(x) > °for every

1

XE M 1+ U M 1-.
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If WE qo, 1], w(Xj) = Yj (j = 1,2,... , m), then (M;;;-voU M~-vo) 1\

{Xl ... Xm} = 0 if W =1= Vo' Then (F, P) has the property TV at (vo , Mw-vJ
We can apply Theorem 6 to obtain results as in Deutsch [4] and Warth [14].

(7) Linear Approximation with Parameter Constraints

Let E = IRn+1, X = [0, 1], Uo , ... , Un E C(X) linear independent and let
F: E - C(X) be given by (ao ,... , an) 1-+ Eaiui' Instead ofF(a) let us writeF", .
Let 0 ~ k l < ... < k r ~ nand 0 ~ 11 < ... < Is ~ n so that {k l , .•• , kr } 1\

{II"'" Is} = 0.
Let A, B C {I, 2,..., r} and for every j E A, aj E IR, for every j E B, bj E IR

and Cl '" Cs E IR. Let

all = Cj, i = 1, 2, ... ,s}.

Suppose OJ < bj if j E A 1\ B. If a E P then

T(a) = li~ f3iUi II3Ie; ;::: 0 if ale; = OJ andj E A, I3Ie; ~ 0 if aiel = bj andj E B,

131; = O,j = 1,2,... ,+
Then P is regular and (F, P) has property R. F[P] is convex, hence an a-sun.

Now suppose Ui(X) = Xi for X E [0, 1] and i = 0, 1, ... , n. Then

F[P] = IF", = t aiUi Iii j ~ F~lel)(O) for every j E A,
.~o

F~Ie;)(O) ~ OJ for every j E B,

F~I;)(O) = cpj = 1,2,... , sl
and for every a: E P,

T(a:) = lq = ito f3iUi Iq(Ie;)(O) ;::: 0 if F~Ie;)(O) = ii j andj E A,

q(Ie;)(O) ~ 0 if F~lel)(O) = OJ and j E E,

q(II)(O) = 0, j = 1, 2, ... , sl
with ii j = kj ! aj (j E A), OJ = k j ! bj (j E B), Cj = Ij ! Cj (j = 1,2, , s).

IfqU>(O) = 0 for q E span{uo ... un} andj E {O, 1,... , n} then q E span({uo un}\
{Uj}).
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lky.) = {j E A I F~k;)(O) = aj},

12(rx) = {j E B IF~k;)(O) = 5J

Let r1(rx) (resp. r2(rx)) be the number of elements of11(rx) (resp. 12(rx)). We note
that span{u1 ... ur } is a Haar space on (0, y] for every y > 0 and every
collection of numbers 1-'-1'" I-'-r E No with 0 < 1-'-1 < ... < I-'-r < n (see
Karlin and Studden [5]).

Now assume k1 > 0, /1 > O. Then r1(rx) + r2(rx) + s < n + I for every
rx E P. Let m(rx) = (n + I) - (r1(rx) + r2(rx) + s) (rx E P). Suppose Vo ,
VI E F[P] and Vo =F VI' Let & E P so that F(&) = v = t(v1 + vo). Then
v - Vo has at most m(&) - I zeros in [0, I]. For j E 11(&), then F~k;)(O) = ai
which implies V~k;)(O) - Vbk;)(O) = 0 and V(k;)(O) - V~kj)(O) = O. Analogously
j E 12(&) implies V(ki)(O) - V~k;)(O) = O. Furthermore V(I;)(O) - Vbl;I(O) = O.
Thus v - Vo E span({uo ... Un}\{UI ... Ul ,(Uk.)iEI (&)UI (&))) which is a Haar

1 8 '1 2

space on (0, I], so v - Vo has at most m(rx) - 1 zeros in (0, I]. Suppose
v(O) - vo(O) = O. Then v - Vo E span({u1 ... Un}\{UI ... Ul ,(Uk.)ieI (&)ul (&))) oF

1 8 '1 2

{8} hence v - Vo has at most m(&) - 2 (;;:'0) zeros in (0, I].
Let us now show that (F, P) has the property TV. Let Vo E F[P] and M

be a T-signature. Suppose there is a VI E F[P], VI =F Vo and M1 < }Vl with
Z(v1 - vo):) M 1+ u M 1-.

Let v = t(v1 + Vo) = F(&). Then F(&) oF vo, Z(F(&) - vo):) M 1+ U M 1

and M 1+ U M 1- contains at most m(&) - I (;)01) points.
Suppose 0 ¢= M 1+ U M 1-. Let q E span({uo ... Un}\{UI ... til ,(Uk.)iel (&luI (&)))

1 B } 1 2

with q(x) = EM(X) for every x E M 1+ U M 1-. Then q E T(&).
If 0 E M 1+ U M 1- then let ql E span({u1 ... un}\{ul ... Ul ,(ukhI (&)ul (&)))

1 ;j J 1 2

with ql(X) = EM(X) for every x E M 1+ U M1-\{0}. Let q, = ql + AEM(O) Uo E

span({uo ... tln}\{u l ... Ul ,(Uk )jel (&)UI (d). If A is sufficiently small then
1 '8 :i 1 2

qix) EM(X) > 0 for every x E M 1+ U M 1-. Furthermore q, E T(&).
So we have proved that (F, P) has property TV at (vo, M) (for every

Vo E F[P] and every T-signature M). By Theorem 7 every W E qo, I] has at
most one best approximation. This has been proved by a different method by
Roulier and Taylor [11].

4. FINAL REMARK

A comparison of this paper with Warth [15] shows that L1-approximation
and uniform approximation of continuous functions can be treated by
similar theories.
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