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1. INTRODUCTION

In this paper we examine approximation problems of the following kind:
Let T and E be normed spaces and P a subset of E, F: E — T a mapping,
and let F[P] be the set of approximating functions. If we 7, then a best
approximation to w is an element v, € F[P] with || w — v,|| < |jw — v]| for
every v € F[P]. We study the question whether such a best approximation is
unique.

Let P be given as a set described by inequality and equality constraints:
I is a finite set, (I';);e; is a set of compact topological spaces, P, is an open
subset of E, Z is a Banach space, and let mappings g, ;: E— R(z e I;,jel)
and p: E — Z be given. Let

P = m ﬂ {eeElg, () <O N{acE|pla) =6}NP,.
Jjel 16l
We assume here that E is a Banach space, F is Fréchet differentiable at every
a € P, the sets (g,,;).er, (j€I) have the property DI at every a € P (see
Warth [13]) and P has the property D2 at every « € P (see Warth [13]).
For a € P let

I) ={jelimaxg, () =0, Ij) ={rel;lg. (x) =0}
for every je I,
E(a) ={he E|p'()h = 0, g, (x)h < 0 for every 7 € ['(x) and j € I(x)}

and T(o) = F'()[E(e)]). Let d(o) denote the dimension of span T(«x). a € P is
called regular, if p'(«) is surjective and there is an h € E with p'(c)h = © and

1D1 and D2 are differentiability assumptions.
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g, {h < 0 for every 7€ I'(«x) and je I(x). P is regular if every ac P is
regular.
In [13] it has been proved (local Kolmogoroff condition):

THEOREM 1. If vy = F(ayp) is a best approximation to we T and o€ P is
regular, then for every h € E(x,)

min{l o F'(ag)h | 1€ Zy_y} < 0. (1.1)

2w_y, 18 the set of continuous, linear functionals / on T with I(w — 1) =
ltw — v .

In this paper we suppose T to be the space C(X) of continuous, real-valued
functions defined on a compact, topological space X with the maximum norm.
We present new necessary and sufficient conditions for an element to be a
unique best approximation. We obtain generalizations of well-known results
of Meinardus and Schwedt [9] to constrained approximation problems.
We apply the general results to constrained approximation problems to
obtain results as in Braess [1], Taylor [12], Loeb, Moursund, and Taylor [8],
Deutsch [4], Warth [14], and Roulier and Taylor [11].

For this approximation problem (1.1) is equivalent to for every g € T(c,)

min{(w(x) — 0y(x)) g(x) | x € My} <0, (1.2)

where My, = {x€ X || w(x) —vy(x)] = llw— 1, [I}. For a simple proof
see Kirsch, Warth, and Werner [6].

We say that (F, P) has the property R, if for every o, B € P there is a
function ¢ e C(X) with ¢(x) > 0 for every x e X and a function g € T(x)
such that F(B) — F(x) = ¢g.

This condition has been used by Krabs [7] (where it was called “Darstell-
barkeitsbedingung”).

If (F, P) has property R, then (1.2) implies for every v € F[P]

min{(w(x) — vo(x))v(x) — ve(x)) | x € My_p} <O. (1.3)

Condition (1.3) is always sufficient for an element v, to be a best approxi-
mation to w (Kolmogoroff criterion). F[P] is called an «-sun (see Brosowski
and Wegmann [3]) if we T and v, is a best approximation to w, then v, is a
best approximation to v, -+ A(w — v,) for every A > 0. If F[P] is an o-sun
and v, is a best approximation to w, then (1.3) holds.

If (F, P) has property R, then F[P] is an o-sun (best approximations are
characterized by the Kolmogoroff criterion) and best approximations are
characterized by the local Kolmogoroff condition.
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2. A NEeCESSARY CONDITION

LemmA 2. Let ay€ P be regular and let (F, P) have property R. Let r
linear independent functions u, - u, € C(X) be given so that T(«y) C
span{u; - u,}. If there is a Be P, F(B) +# F(xy) so that F(B) — F(x,) has r
zeros x; *** x, € X, then there is a function w € C(X) so that F(«,) and F(B) are
best approximations to w.

Proof. Let GeC(X) be defined by G(x) = |v,(x) — v(x)] (xeX),
where v, = F(B), v, = F(xg). Let o = || G| and choose x,€ X so that

G(xy) = a. Let
uy(x;)
£ = ( . ), j=0,1,.,r.

u'r(.x.?’)

There is a vector (8, - B,) € R"*1\{®)} so that

If % --% are linear independent, then B, # 0 and we can assume

Bo(v1(xe) — vo(xo)) > 0.
If %, -+~ %, are linear dependent we can assume 8, = 0. Let

J={je{0r}|B; # 0.
There is a function g € C(X), jlg|| = 1 so that

g(x"i):’gﬁ, JeJ.

Let w € C(X) be defined by
wx) = gx)a — GX)) + volx)  (xeX).
Then || w — vy || = «. For j € J\{0} we obtain

W) — o) =

hence {t;|jeJ}C M, , .
(2.1) implies ZLQ Bih(x;) = 0 for every he span{u, --- u,}, particularly
for every & € T(x,). Thus
min{Bh(x,) |jeJ} <0
for every h € T(xy).
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For j e J\{0} B(w(x;) — vy(x;)) > 0 and if 0 € J then By(w(xg) —vy(x,)) > 0.
Consequently

min{(w(x;) — vo(x;)) A(x;) [jeJ} <O

for every h € T(a,). Since (F, P) has property R, v, is a best approximation
to w by the Kolmogoroff criterion. Since || w — v, || < «, v, is 4 best approxi-
mation as well.

(F, P) has the global Haar property, if

— d(x) < oo for every a € P,
— for every v € F[P] there is an « € P so that F(a) = v and d(«) > 1,
— v, ¥ F{P] and v s © imply that v — 3 has at most d; — 1 zeros with

d; = min{d(x) | x e P, F(a) = 9, d(a)) > 1}.
Applying Lemma 2 we obtain

THEOREM 3. Let P be regular and let (F, P) have property R. If every
we C(X) has at most one best approximation and 1 < d(x) < oo for every
o € P, then (F, P) has the global Haar property.

Proof. Suppose there are v, § € F[P] so that v —  has d; — 1 zeros. Let
r =d;, &e P so that F(&) = ¥ and d(&) = r. Choose u, ,..., u, € C(X) so
that T(&) C span {u, - u,}. Then there is a function w € C(X) so that » and ¢
are best approximations to w according to Lemma 2 and we obtain a contra-
diction.

ExampPLE. Let E = R", u - u,c C(X) linear independent. Let F:
E — C(X) be defined by (o ) > Srg oty . I ={1,2,...,n}. Let g;:
E — R (jeJ) be defined by («; -** o) > —a; . Then P = {(o; - ,) € R |
a; = 0j =1, 2,..,n} is regular. For o € P let
Ho) ={jel|a =0}

E(@) = {(y; - yn) € R | y; = O for every j € I(2)},

Y. yu;€ C(X) | y; = 0 for every j € I(o);,

i=1

T() =

d(x) = n.

Since (F, P) has property R and P is regular we obtain the implication:
If every w € C(X) has at most one best approximation then span{y, - u,}
is a Haar space. (Apply Theorem 3). But the inverse implication does not
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hold. Let X = [—1,1], n = 3, and u,(x) = 1, uy(x) = x, uy(x) = x® for
every x€ X,

Let w(x) = x2 — 1 for every x € X. Then & and x? are best approximations
to w.

3. A SUFFICIENT CONDITION

A T-signature (M*, M-) is a pair of closed, disjoint Gs-subsets of X with
M+U M-+ @.Let M = (M*, M-) and

ep(x) =1 if xe M+,
eax) = —1 if xeM-.

The T-signature M is called extremal for v,e F[P] if for every v € F[P],
min{eg(x)(o(x) — vy(x)) | xe Mt U M-} < 0. If we C(X), w # @ then the
T-signature M,, = (M,,*+, M,,") is defined by M,* = {xe X | w(x) = || wi},
M,~ ={xeX|wx) = —lwl}

LEMMA 4. Let oy € P be regular. If M is a T-signature which is extremal
Jor vy = F(oy), then for every g € T(ay), min{eg(x) g(x) | xe M+ U M~} < 0.

Proof. There is a function ¢ € C(X) with M+t = M+, M. = M-, and
e(x) = ey(x) for every x € M+ U M-, By the Kolmogoroff criterion v, is a
best approximation to v, -+ e since M is extremal for v, . Hence by Theorem 1
we obtain the result.

The set of zeros of a function w e C(X) is denoted by Z(w). If M and M,
are two T-signatures and M; C M+, M, C M~ then we write M, < M.

Using an idea of Brosowski and Wegmann [3, “Durchschnittssatz”] we
obtain:

LemMA 5. Let F[P] be an a-sun. Let we C(X) and suppose v, , v, € F[P]
are best approximations to w. Then M = (M*, M-) with

M* = M;;—’Uo N M«j—vl s M = M;—vo N M;vl'vo

is a T-signature which is extremal for v, (and Z(v, — vy) D M+ U M-).

Proof. LetA > 0Qand w, = w -+ X(w — v,). Since F[P] is an a-sun v, is a
best approximation to w, and ||w, — v, = (1 + A) || w — v, |. However
[wa— vl <Iwa—wll+[lw—2o]l <Alw — vy || 1w =05l = (1 +2)
Il w — v, ||. Hence v, is a best approximation to w, .

Since F[P] is an a-sun

Lmin () — 2,(O)(0) — 0,(x)) <0

for every v € F{P]. (The Kolmogoroff criterion is necessary.)
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M;A—vo ={xeX | wx) = v(x) + Awx) — v(x)) = 1 + N llw—v;[}
=My o\ My_, = M*
and
My vy = M.

Hence mingep+opm- ep(3)((x) — v4(x)) < 0 for every veF[P], ie., M is
extremal for v, .

Let v, & F[P] and M is a T-signature. (F, P) has the property TU at (v, , M)
if the following holds:

If M, < M and if there is a v € F[P], v # v, with Z(v — v5) D My* U My,
then there is an « € P so that

() Flo) # v
(i) Z(F(e) — v9) D Myt U M~
(iii) there is an geT(w) so that ey (x)g(x) >0 for every xe
MU M-

(F, P) has the property TU if it has the property at (v,, M) for every
v, € F[P] and every T-signature M.

THEOREM 6. If P is regular, F[P] is an a-sun, w e C(X), and vy € F[P] is a
best approximation to w, then v, is the only best approximation if (F, P) has
the property TU at (v, My_y ).

Proof. Suppose there is a v € F[P], v # v, which is a best approximation
to w. By Lemma 5 M* = M;_, N M+_1,, M- = Mg_, N M,_, defines a
T-signature M = (M+, M) with M < M, v, and Z(v — V) D M+U M-
Then there is an « € P with F(x) #£ vy, Z(F(a) — 1p) O M* U M~ and there is
a qo € T(x) with ey (x) go(x) > 0 for every x € M+ U M-, M is extremal for
vy . Z(F(0) — 1) D M* U M~ implies that M is extremal for F(x). Then
Lemma 4 implies min{eg(x) g(x) | xe M* U M-} < 0 for every g€ T(x)
and we obtain a contradiction with ¢, .

As a corollary we obtain

THEOREM 7. If P isregular, F[P) is an o-sun and (F, P) has the property TU,
then every w € C(X) has at most one best approximation.

Examples

(1) If (F, P) has the global Haar property and T(«) is a Haar space on
X for every o € P2 then (F, P) has the property TU. Applying Theorem 7

? A finite dimensional linear subspace H # {8} of C(X) is called a Haar space on X,
if every v € H has at most dim H — 1 zeros (in X).
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we obtain the generalization of a well-known theorem of Meinardus and
Schwedt [9, Satz 14].

(2) If (F, P) has property R and T(x) is a Haar space on X for every
o € P, then (F, P) has the global Haar property. Applying Theorem 7 (and a
theorem of Krabs [7] on the relation of the property R to asymptotic con-
bexity) we obtain a result similar to Satz 10 of Meinardus and Schwedt [9].

IfP=E neN,u - u, e C(X) are linear independent and F: E - C(X)
is given by (o *** ) > Zou, , then Theorems 3 and 7 imply the well-known
theorem (see [10]):

Every we C(X) has at most one best approximation if and only if
span{y, '~ u,} is a Haar space on X.

Brosowski [2] claimed the equivalence of the uniqueness of best approxi-
mations and the space T(«) to be Haar spaces on X in the case of asymptotic
convexity. However in the proof there is a gap.

(3) Suppose that for every v, € F[P] there is a o € P with F(og) = vy,
T(a,) is a Haar space on X, and every difference v — v, , v € F[P], v # v, has
at most d(«,) — 1 zeros, then (F, P) has property TU.

In the following three examples let ne N, P, = E = R*, X = [0, 1] and
let F: E — CJ[0, 1] be given by (& - «,) +> Za,u; , where u, - u, € C[0, 1]
are linear independent.

(4) Linear Approximation with Parameter Constraints

Let meN, m < n Suppose for every set I with {1,2,..,m}CIC
{1, 2,..., n} spanfu; | ieI} is a Haar space on X. Let P = {(oy ~"* @,,) €
Elwa; > 0j=m-+1--n} Then P is regular and (F, P) has the property R.

Let v, € F[P], M is a T-signature. Suppose there is a signature M, < M
and a v, € F[P], v; % vy so that Z(v, — v)) D MT U M—; ¢ = Z&u; =
4(v; + v,). Let r be the number of indices je{m + 1 -- n} with 4; > 0 and
I={je{m+1-n|d& >0, Then % — v,espan({u * un} U {(®)icr))
and 4 — v, has at most m + r — 1 zeros. Then there is a g e T(&) with
€, (x) g(x) > 0 for every x € M;* U M,~. Hence (F P) has property TU at
(vo , M) (for every v, € F[P] and every T-signature /).

(5) Linear Restricted Range Approximation

Suppose U = span{u, -*- u,} is a Haar space on X. I = {1, 2}, T" == [0, 1].
Let , u € C[0, 1] so that I(x) << u(x) for every x€[0,1]. g, E—~ R (re )
is defined by

(o "+ o) > Zou(r) — u(7)
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and g, E—>R(rel) by

(o " o0p) 2 I(7) — Ly (7).
Then

P ={(oy o) eE|g (o o) <O,
Groloy - g) < Oforevery eI}

is regular as was shown by Warth [13] and (F, P) has property R.
If we C[0, 1] and v, € F[P] so that

(M, N {x € [0, 1] | vg(x) = u(x)})

U (My_oy DX €0, 1] 1 0o(x) = I(0)}) = o

then (F, P) has the property TU at (v, , M,,_, ). For ¥ < M,,_, and v € F[P],
vV#£ v, With Z(v — ) DMTUM-. 4 ={xel0,1]]|4x) =u(x)}, B =
{xe0, 11| 4(x) = I(x)}, where ¥ = }(v + vy) = 2&;u; . Then

T(& - &) = {ge U} g(x) <O forevery xc 4,
g(x) = 0 for every x € B},

Z(0 — vy) = Z{v — vg) DO M+ U M~ implies Z(3 — v)) D MT U M- UAUB.
Since U is a Haar space on [0, 1] M+ U M~ U 4 U B contains at most n — 1
points. (A N M) U (BN M) = ¢ implies that there is a ¢ € U so that
gx)=1ifxeMt glx) = —1if xeM-, qg(x) <O0if xe4 and g(x) =0
if x € B. Hence g€ T(&; - &,) and €E(x) g(x) > O for every xe M+ U M-

One can argue in the same way in the case of restricted range approxi-
mation. So we obtain uniqueness results as in Taylor [12] and Loeb et al. [8].

(6) Linear Approximation with Interpolatory Constraints

Suppose U = span{u, '-- u,} 1s a Haar space on X. Let me N, m <mn,
0y < " <xp<landy, -~ yneR.p: E— R™is given by (o -+ o)+
(Bt (x)) ~— Y1 yeees Zosu(X,) — V). Then p is linear and surjective, thus
P = {(a; =" ) | ploy -+ o) = O} is regular and (F, P) has property R.

If v, € F[P] and M is a T-signature with {x; ‘- X, "(M*U M) = @
then (F, P) has the property TU at (v, , M). Forv e F[P],v # voand M, < M
with Z(v — v)) D Myt U M~ v = Zau;. Then T(oy - a,) ={geU|
q(x;)) =0, j = 1,2,...,m}. Since M,* U M,~ contains at most n — m — 1
points there is a g € U with g(x) = 1 if xe M,*+, g(x) = —1 if xe M~ and
q(x;) =0,j = 1,2,...,m. Then g € T(a; - «,) and ey (x) g(x) > 0 for every
xe Myt U My
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If weCl0,1], wx;) =y; (j=1,2,.,m), then (M,_ oY My )N
{x; - xm} = @ if w 5% v, . Then (F, P) has the property TU at (v,, w_,,)
We can apply Theorem 6 to obtain results as in Deutsch [4] and Warth [14]

(7) Linear Approximation with Parameter Constraints

Let E =R, X =[0,1], 4,..., 4, € C(X) linear independent and let
F: E — C(X) be given by (y ,..., &) — Zau; . Instead of F(o) let us write F, .
LetO <k < <k, <nand0 <[, < <, <nsothat{k,,. .k} N
{l yes I} = 3.

Let A, BC{1, 2,...,r} and for every je 4, a;€R, for every je B, b;eR
and ¢; - ¢, €R. Let

P = {(ogr ap) € E| a; < oy, for every je A, o, < b; for every je B,

a, = ¢, 0 =1,2,.., 5}
Suppose a; < b; if je A N B. If « € P then

T((X) - Z Biui Bk ZOIfak: = a,-andjEA, Bk} <Olf06kj = bjandjeB,
i=0

Then P is regular and (F, P) has property R. F[P] is convex, hence an a-sun.
Now suppose u,(x) = x* for xe[0,1}and i = 0, 1,..., n. Then

FIP] — jF =Y o,

=0

a, < F*(0) for every j € 4,

F%X0) < b, for every j e B,

F;zj)(o) =0, = 1,2,.,8

and for every a € P,

7@ = o= 3. b

g*(0) > 01fF(")(0) =a;and j€ 4,
7%(0) <0 lfF(kf)(O) = b, and j€ B,

g0 =0, = 1,2, 5

with @, = k;la; (jed), b; =k'b;, (jeB), & =1Ll¢, (j=1,2..,5).

If ¢¥(0) = Ofor g & span{u, - u,} andj € {0, 1,..., n} then g € span({u, --* u,}\
{ud).
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Thus
Span({uo o un}\{ull uls H (ukj)iéll(u)ulz(a)}) C T(OL),

where
I(®) = {je A | F®©0) = a},

I(®) = {j € B | F*(0) = b).

Let ri(a) (resp. ry(«)) be the number of elements of I («) (resp. I(«)). We note
that span{u; --- #,} is a Haar space on (0, y] for every y > 0 and every
collection of numbers p, - p,eNy with 0 < p, < - <y, < n (see
Karlin and Studden [5}).

Now assume k; > 0, /; > 0. Then (o) + ro(a) + s < n + 1 for every
aeP. Let m(e) = (n+ 1) — (ri{e) + ro(x) + 5) (x€P). Suppose v,,
v, €F[P] and vy # v;. Let &€ P so that F(&) = % = 3(v; + v,). Then
% — v, has at most m(&) — 1 zeros in [0, 1]. For j € I,(&), then F*?(0) = g;
which implies v*?(0) — v$¥”(0) = 0 and 3%)(0) — v{*(0) = 0. Analogously
je I(8) implies #*%)(0) — v{*"(0) = 0. Furthermore v(0) — v{'#'(0) = 0.
Thus @ — vy € span({uy - w\uy "4y, (“k,.)ml(a)u:z(&)}) which is a Haar
space on (0, 1], so 4 — v, has at most m(«) — 1 zeros in (0, 1]. Suppose
9(0) — v,(0) = 0. Then 4 — v, & span({, - un}\{utl g, (ukj)jal(a)ulg(&)}) 7=
{®} hence 4 — v, has at most m(&) — 2 (=>0) zeros in (0, 1].

Let us now show that (F, P) has the property TU. Let v, € F[P] and M
be a T-signature. Suppose there is a v, € F[P], v, < v, and M; < M with
Z(vy — 1) D MyF U M.

Let ¢ = (v, + vy) = F(&). Then F(&) 5= vy, Z(F(&) — vy) D Myt U My~
and M;* U M~ contains at most m(&) — 1 (1) points.

Suppose 0 ¢ M+ U M;~. Let g € span({u, - un}\{“zl i, (ukj)jell(&)ulz(&)})
with g(x) = ey(x) for every x € Myt U M,~. Then g € T(&).

If 0e M;* U M,~ then let g, € span({y; - un}\{ul1 LA (uki)jell(&)ulz(&)})
with g,(x) = ey(x) for every x € M+ U M;7\{0}. Let ¢, = ¢, -+~ Aegz(0) uy €
span({uy =+ w\wy sy, Uy )ier,@ur,@)). If A is sufficiently small then
g\(x) egz(x) > 0 for every x € Myt U M,~. Furthermore ¢, € T(4).

So we have proved that (F, P) has property TU at (v,, M) (for every
v, € F[P] and every T-signature M). By Theorem 7 every w € C[0, 1] has at
most one best approximation. This has been proved by a different method by
Roulier and Taylor [11].

4, FINAL REMARK

A comparison of this paper with Warth [15] shows that L;-approximation
and uniform approximation of continuous functions can be treated by
similar theories.
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